| 
             
          NeuroSolutions 
           Level Summary  
           | 
            | 
          A | 
            | 
          B | 
            | 
          C | 
        
        
          |   | 
            | 
            | 
            | 
            | 
            | 
        
        
          |  Topologies  | 
          
        
          | Multilayer Perceptron (MLP) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Generalized Feedforward Network | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Modular Network | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Jordan / Elman Networks | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Self-Organizing Map (SOM) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Principal Component Analysis (PCA) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Radial Basis Function (RBF) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Probabilistic Neural Network (PNN) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | General Regression Neural Network (GRNN) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Neuro-Fuzzy Network (CANFIS) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Support Vector Machine Network | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Hopfield Network | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Time Delay Neural Network (TDNN) | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Time-Lag Recurrent Network (TLRN) | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | General Recurrent Network | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Maximum Number of Inputs / Outputs / Neurons Per  Layer | 
            | 
          500  | 
            | 
          Unlimited  | 
          
        
          | Maximum Number of Hidden Layers | 
            | 
          6  | 
            | 
          Unlimited  | 
          
        
          | Learning Paradigms  | 
          
        
          | Backpropagation | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Unsupervised Learning (Hebbian,Ojas,Sangers,Competitive,Kohonen) | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Recurrent Backpropagation | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Backpropagation through time | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Gradient Descent Methods  | 
          
        
          | Step / Momentum | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Delta Bar Delta | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Quickprop | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Conjugate Gradient | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Levenberg-Marquardt | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Advanced Features  | 
          
        
          | Exemplar Weighting - Improved training for data with unequal class distribution | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Macros / OLE Automation - API to Automate and control NeuroSolutions | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Sensitivity Analysis - to determine the most influential inputs | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Genetic Optimization - Intelligent searching for the best parameters and inputs | 
            | 
          Y   | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | Iterative Prediction - Advanced method for time series prediction | 
            | 
            | 
            | 
          Y   | 
            | 
          Y   | 
        
        
          | ANSI C++ Source Code Generation - Embedded neural networks into your own applications, train neural networks on faster computers  | 
            | 
            | 
            | 
          Y  | 
            | 
          Y  | 
        
        
          | User-defined Neural Components (using DLLs) (Nonlinearities,Interconnections, Learning Rules, Error Criteria, input/Output, Memory Structures  | 
            | 
            | 
            | 
            | 
            | 
          Y  |